Clinical Decision Support Systems to Predict Drug–Drug Interaction Using Multilabel Long Short-Term Memory with an Autoencoder

Author:

Alrowais Fadwa1ORCID,Alotaibi Saud S.2ORCID,Hilal Anwer Mustafa3,Marzouk Radwa4ORCID,Mohsen Heba5ORCID,Osman Azza Elneil3,Alneil Amani A.3,Eldesouki Mohamed I.6

Affiliation:

1. Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Department of Information Systems, College of Computing and Information System, Umm Al-Qura University, Makkah 24211, Saudi Arabia

3. Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al Kharj 16436, Saudi Arabia

4. Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

5. Department of Computer Science, Faculty of Computers and Information Technology, Future University in Egypt, New Cairo 11835, Egypt

6. Department of Information System, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al Kharj 16436, Saudi Arabia

Abstract

Big Data analytics is a technique for researching huge and varied datasets and it is designed to uncover hidden patterns, trends, and correlations, and therefore, it can be applied for making superior decisions in healthcare. Drug–drug interactions (DDIs) are a main concern in drug discovery. The main role of precise forecasting of DDIs is to increase safety potential, particularly, in drug research when multiple drugs are co-prescribed. Prevailing conventional method machine learning (ML) approaches mainly depend on handcraft features and lack generalization. Today, deep learning (DL) techniques that automatically study drug features from drug-related networks or molecular graphs have enhanced the capability of computing approaches for forecasting unknown DDIs. Therefore, in this study, we develop a sparrow search optimization with deep learning-based DDI prediction (SSODL-DDIP) technique for healthcare decision making in big data environments. The presented SSODL-DDIP technique identifies the relationship and properties of the drugs from various sources to make predictions. In addition, a multilabel long short-term memory with an autoencoder (MLSTM-AE) model is employed for the DDI prediction process. Moreover, a lexicon-based approach is involved in determining the severity of interactions among the DDIs. To improve the prediction outcomes of the MLSTM-AE model, the SSO algorithm is adopted in this work. To assure better performance of the SSODL-DDIP technique, a wide range of simulations are performed. The experimental results show the promising performance of the SSODL-DDIP technique over recent state-of-the-art algorithms.

Funder

Princess Nourah bint Abdulrahman University

Umm al-Qura University

Prince Sattam Bin Abdulaziz University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3