A multimodal deep learning framework for predicting drug–drug interaction events

Author:

Deng Yifan12ORCID,Xu Xinran1,Qiu Yang1,Xia Jingbo1ORCID,Zhang Wen1ORCID,Liu Shichao1

Affiliation:

1. College of Informatics, Huazhong Agricultural University, Wuhan 430070, China

2. Electronic Information School, Wuhan University, Wuhan 430072, China

Abstract

Abstract Motivation Drug–drug interactions (DDIs) are one of the major concerns in pharmaceutical research. Many machine learning based methods have been proposed for the DDI prediction, but most of them predict whether two drugs interact or not. The studies revealed that DDIs could cause different subsequent events, and predicting DDI-associated events is more useful for investigating the mechanism hidden behind the combined drug usage or adverse reactions. Results In this article, we collect DDIs from DrugBank database, and extract 65 categories of DDI events by dependency analysis and events trimming. We propose a multimodal deep learning framework named DDIMDL that combines diverse drug features with deep learning to build a model for predicting DDI-associated events. DDIMDL first constructs deep neural network (DNN)-based sub-models, respectively, using four types of drug features: chemical substructures, targets, enzymes and pathways, and then adopts a joint DNN framework to combine the sub-models to learn cross-modality representations of drug–drug pairs and predict DDI events. In computational experiments, DDIMDL produces high-accuracy performances and has high efficiency. Moreover, DDIMDL outperforms state-of-the-art DDI event prediction methods and baseline methods. Among all the features of drugs, the chemical substructures seem to be the most informative. With the combination of substructures, targets and enzymes, DDIMDL achieves an accuracy of 0.8852 and an area under the precision–recall curve of 0.9208. Availability and implementation The source code and data are available at https://github.com/YifanDengWHU/DDIMDL. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Huazhong Agricultural University Scientific & Technological Self-innovation Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3