Finite Elements Analysis of Tooth—A Comparative Analysis of Multiple Failure Criteria

Author:

Moga Radu Andrei1ORCID,Olteanu Cristian Doru2,Daniel Botez Mircea3ORCID,Buru Stefan Marius3

Affiliation:

1. Department of Cariology, Endodontics and Oral Pathology, School of Dental Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Str. Motilor 33, 400001 Cluj-Napoca, Romania

2. Department of Orthodontics, School of Dental Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Str. Avram Iancu 31, 400083 Cluj-Napoca, Romania

3. Department of Structural Mechanics, School of Civil Engineering, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania

Abstract

Herein Finite elements analysis (FEA) study assesses the adequacy and accuracy of five failure criteria (Von Mises (VM), Tresca, maximum principal (S1), minimum principal (S3), and Hydrostatic pressure) for the study of tooth as a structure (made of enamel, dentin, and cement), along with its stress absorption–dissipation ability. Eighty-one 3D models of the second lower premolar (with intact and 1–8 mm reduced periodontium) were subjected to five orthodontic forces (intrusion, extrusion, tipping, rotation, and translation) of 0.5 N (approx. 50 gf) (in a total of 405 FEA simulations). Only the Tresca and VM criteria showed biomechanically correct stress display during the 0–8 mm periodontal breakdown simulation, while the other three showed various unusual biomechanical stress display. All five failure criteria displayed comparable quantitative stress results (with Tresca and VM producing the highest of all), showing the rotational and translational movements to produce the highest amount of stress, while intrusion and extrusion, the lowest. The tooth structure absorbed and dissipated most of the stress produced by the orthodontic loads (from a total of 0.5 N/50 gf only 0.125 N/12.5 gf reached PDL and 0.01 N/1 gf the pulp and NVB). The Tresca criterion seems to be more accurate than Von Mises for the study of tooth as structure.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3