Affiliation:
1. Department of Cariology, Endodontics and Oral Pathology, School of Dental Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Str. Motilor 33, 400001 Cluj-Napoca, Romania
2. Department of Orthodontics, School of Dental Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Str. Avram Iancu 31, 400083 Cluj-Napoca, Romania
Abstract
Herein, the finite elements analysis (FEA) numerical study investigated the absorption–dissipation ability of dental tissues under orthodontic forces, during orthodontic movements and the periodontal breakdown process. Additionally, we investigated the correctness of FEA boundary assumptions up to 2.4 N of loads. Eighty-one models of the second lower premolar were subjected to 810 FEA numerical simulations using Tresca failure criterion under 0.6 N, 1.2 N, and 2.4 N and five movements: intrusion, extrusion, rotation, tipping, and translation. The results showed that both coronal dentine and enamel components had comparable high absorption–dissipation abilities, allowing for only a limited fraction of stresses to reach the circulatory sensitive tissues. Isotropy, linear elasticity, and homogeneity are correct when Tresca is employed up to 2.4 N. Forces of 0.6 N, 1.2 N, and 2.4 N displayed similar qualitative results for all movements and bone levels, while quantitative results doubled for 1.2 N and quadrupled for 2.4 N when compared with 0.6 N. FEA simulations showed 0.6–1.2 N to be safe for application in intact periodontium, while for reduced periodontium more than 0.6 N are prone to resorptive and ischemic risks. For reducing these risks, after 4 mm of bone loss, 0.2–0.6 N are recommended. Rotation and translation were the most stressful followed by tipping.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献