Fine-Scale Monitoring of Industrial Land and Its Intra-Structure Using Remote Sensing Images and POIs in the Hangzhou Bay Urban Agglomeration, China

Author:

Huang Lingyan,Xiang Shanshan,Zheng Jianzhuang

Abstract

China has experienced rapid industrial land growth over last three decades, which has brought about diverse social and environmental issues. Hence, it is extremely significant to monitor industrial land and intra-structure dynamics for industrial land management and industry transformation, but it is still a challenging task to effectively distinguish the internal structure of industrial land at a fine scale. In this study, we proposed a new framework for sensing the industrial land and intra-structure across the urban agglomeration around Hangzhou Bay (UAHB) during 2010–2015 through data on points of interest (POIs) and Google Earth (GE) images. The industrial intra-structure was identified via an analysis of industrial POI text information by employing natural language processing and four different machine learning algorithms, and the industrial parcels were photo-interpreted based on Google Earth. Moreover, the spatial pattern of the industrial land and intra-structure was characterized using kernel density estimation. The classification results showed that among the four models, the support vector machine (SVM) achieved the best predictive ability with an overall accuracy of 84.5%. It was found that the UAHB contains a huge amount of industrial land: the total area of industrial land rose from 112,766.9 ha in 2010 to 132,124.2 ha in 2015. Scores of industrial clusters have occurred in the urban-rural fringes and the coastal zone. The intra-structure was mostly traditional labor-intensive industry, and each city had formed own industrial characteristics. New industries such as the electronic information industry are highly encouraged to build in the core city of Hangzhou and the subcore city of Ningbo. Furthermore, the industrial renewal projects were also found particularly in the core area of each city in the UAHB. The integration of POIs and GE images enabled us to map industrial land use at high spatial resolution on a large scale. Our findings can provide a detailed industrial spatial layout and enable us to better understand the process of urban industrial dynamics, thus highlighting the implications for sustainable industrial land management and policy making at the urban-agglomeration level.

Funder

Philosophy and Social Science Planning Project of Zhejiang Province

National Social Science Foundation Project

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3