Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities

Author:

Solano Meza Johanna Karina1ORCID,Orjuela Yepes David1,Rodrigo-Ilarri Javier2ORCID,Rodrigo-Clavero María-Elena2ORCID

Affiliation:

1. Department of Environmental Engineering, Santo Tomás University, Road 9 Street 51-11, Bogotá 110231, Colombia

2. Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), Universitat Politècnica de València, 46022 Valencia, Spain

Abstract

The development of methodologies to support decision-making in municipal solid waste (MSW) management processes is of great interest for municipal administrations. Artificial intelligence (AI) techniques provide multiple tools for designing algorithms to objectively analyze data while creating highly precise models. Support vector machines and neuronal networks are formed by AI applications offering optimization solutions at different managing stages. In this paper, an implementation and comparison of the results obtained by two AI methods on a solid waste management problem is shown. Support vector machine (SVM) and long short-term memory (LSTM) network techniques have been used. The implementation of LSTM took into account different configurations, temporal filtering and annual calculations of solid waste collection periods. Results show that the SVM method properly fits selected data and yields consistent regression curves, even with very limited training data, leading to more accurate results than those obtained by the LSTM method.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3