Maximizing Biogas Yield Using an Optimized Stacking Ensemble Machine Learning Approach

Author:

Mukasine Angelique1,Sibomana Louis2ORCID,Jayavel Kayalvizhi3,Nkurikiyeyezu Kizito4,Hitimana Eric1ORCID

Affiliation:

1. African Center of Excellence in the Internet of Things, University of Rwanda, Kigali P.O. Box 3900, Rwanda

2. National Council for Science and Technology, Kigali P.O. Box 2285, Rwanda

3. Creative Computing Institute, University of the Arts London, London WC1V 7EY, UK

4. Department of Electrical and Electronics Engineering, University of Rwanda, Kigali P.O. Box 3900, Rwanda

Abstract

Biogas is a renewable energy source that comes from biological waste. In the biogas generation process, various factors such as feedstock composition, digester volume, and environmental conditions are vital in ensuring promising production. Accurate prediction of biogas yield is crucial for improving biogas operation and increasing energy yield. The purpose of this research was to propose a novel approach to improve the accuracy in predicting biogas yield using the stacking ensemble machine learning approach. This approach integrates three machine learning algorithms: light gradient-boosting machine (LightGBM), categorical boosting (CatBoost), and an evolutionary strategy to attain high performance and accuracy. The proposed model was tested on environmental data collected from biogas production facilities. It employs optimum parameter selection and stacking ensembles and showed better accuracy and variability. A comparative analysis of the proposed model with others such as k-nearest neighbor (KNN), random forest (RF), and decision tree (DT) was performed. The study’s findings demonstrated that the proposed model outperformed the existing models, with a root-mean-square error (RMSE) of 0.004 and a mean absolute error (MAE) of 0.0024 for the accuracy metrics. In conclusion, an accurate predictive model cooperating with a fermentation control system can significantly increase biogas yield. The proposed approach stands as a pivotal step toward meeting the escalating global energy demands.

Funder

African Centre of Excellence on the Internet of Things (ACEIoT), University of Rwanda, College of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3