Convolutional Neural Network-Based ECG-Assisted Diagnosis for Coal Workers

Author:

Wang Yujia,Chen Zhe,Tian Sen,Zhou Shuxun,Wang Xinbo,Xue Ling,Wu JianhuiORCID

Abstract

Objective: To process and extract electrocardiogram (ECG, ECG, or EKG) features using a convolutional neural network (CNN) to establish an ECG-assisted diagnosis model. Methods: Coal workers who underwent physical examinations at Gequan Mine Hospital and Dongpang Mine Hospital of Hebei Jizhong Energy from July 2020 to September 2020 were selected as the study subjects. The ECG images were preprocessed. We use Python software and convolutional neural network to establish ECG images recognition and classification model.We usecalibration curve, calibration-in-the-large, Brier score, specificity, sensitivity, F1 score, Kappa value, accuracy, and area under the curve (AUC) of ROC to evaluate the performance of the model. Results: The number of abnormal ECG results was 849, and the rate of abnormal results was 25.02%. The test set accuracies of the sinus bradycardia model, nonspecific intraventricular conduction delay model, myocardial ischemia model, and sinus tachycardia model were 97.66%, 96.49%, 93.62%, and 93.02%, respectively; sensitivities were 96.63%, 96.30%, 96.88% and 95.24%, respectively; specificities were 98.78%, 96.67%, 86.67%, and 90.90%, respectively; Brier scores were 0.03, 0.07, 0.09, and 0.11, respectively; Calibration-in-the-large values were 0.026, 0.110, 0.041, and 0.098, respectively. Conclusions: The convolutional neural network model can accurately identify the main ECG abnormality types of coal workers. Additionally, the main ECG abnormalities in these coal company workers were sinus bradycardia, non-specific intraventricular conduction delay, myocardial ischemia, and sinus tachycardia.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3