A VLSI Chip for the Abnormal Heart Beat Detection Using Convolutional Neural Network

Author:

Chen Yuan-HoORCID,Chen Szi-Wen,Chang Pei-Jung,Hua Hsin-Tung,Lin Shinn-Yn,Chen Rou-Shayn

Abstract

The heart is one of the human body’s vital organs. An electrocardiogram (ECG) provides continuous tracings of the electrophysiological activity originated from heart, thus being widely used for a variety of diagnostic purposes. This study aims to design and realize an artificial intelligence (AI)-based abnormal heart beat detection with applications for early detection and timely treatment for heart diseases. A convolutional neural network (CNN) was employed to achieve a fast and accurate identification. In order to meet the requirements of the modularity and scalability of the circuit, modular and efficient processing element (PE) units and activation function modules were designed. The proposed CNN was implemented using a TSMC 0.18 μm CMOS technology and had an operating frequency of 60 MHz with chip area of 1.42 mm2 and maximum power dissipation of 4.4 mW. Furthermore, six types of ECG signals drawn from the MIT-BIH arrhythmia database were used for performance evaluation. Results produced by the proposed hardware showed that the discrimination rate was 96.3% with high efficiency in calculation, suggesting that it may be suitable for wearable devices in healthcare.

Funder

Ministry of Science and Technology, Taiwan

Chang Gung University

Chang Gung Memorial Hospital

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Energy-Efficient ECG Processor Based on HDWT and a Hybrid Classifier for Arrhythmia Detection;Applied Sciences;2023-12-29

2. Artificial Intelligence Chip Design for High-Speed Cardiac Arrhythmia Classification;IEEE Nanotechnology Magazine;2023-12

3. Implementation of TCAM Controller Enabled CDMA Network on Chip Router for High-Speed 5G Communications;SN Computer Science;2023-09-27

4. Heart Arrhythmia Detection Using FPGA;2023 2nd International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA);2023-06-16

5. General and patient-specific seizure classification using deep neural networks;Analog Integrated Circuits and Signal Processing;2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3