General and patient-specific seizure classification using deep neural networks

Author:

Massoud Yasmin M.ORCID,Abdelzaher Mennatallah,Kuhlmann Levin,Abd El Ghany Mohamed A.

Abstract

AbstractSeizure prediction algorithms have been central in the field of data analysis for the improvement of epileptic patients’ lives. The most recent advancements of which include the use of deep neural networks to present an optimized, accurate seizure prediction system. This work puts forth deep learning methods to automate the process of epileptic seizure detection with electroencephalogram (EEG) signals as input; both a patient-specific and general approach are followed. EEG signals are time structure series motivating the use of sequence algorithms such as temporal convolutional neural networks (TCNNs), and long short-term memory networks. We then compare this methodology to other prior pre-implemented structures, including our previous work for seizure prediction using machine learning approaches support vector machine and random under-sampling boost. Moreover, patient-specific and general seizure prediction approaches are used to evaluate the performance of the best algorithms. Area under curve (AUC) is used to select the best performing algorithm to account for the imbalanced dataset. The presented TCNN model showed the best patient-specific results than that of the general approach with, AUC of 0.73, while ML model had the best results for general classification with AUC of 0.75.

Funder

German University in Cairo

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Hardware and Architecture,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification & Detection of Epilepsy Using IEEG Application;2024 4th International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2024-05-14

2. Hardware implementation of deep neural network for seizure prediction;AEU - International Journal of Electronics and Communications;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3