Emotion Recognition from Large-Scale Video Clips with Cross-Attention and Hybrid Feature Weighting Neural Networks

Author:

Zhou Siwei,Wu Xuemei,Jiang Fan,Huang  Qionghao,Huang Changqin

Abstract

The emotion of humans is an important indicator or reflection of their mental states, e.g., satisfaction or stress, and recognizing or detecting emotion from different media is essential to perform sequence analysis or for certain applications, e.g., mental health assessments, job stress level estimation, and tourist satisfaction assessments. Emotion recognition based on computer vision techniques, as an important method of detecting emotion from visual media (e.g., images or videos) of human behaviors with the use of plentiful emotional cues, has been extensively investigated because of its significant applications. However, most existing models neglect inter-feature interaction and use simple concatenation for feature fusion, failing to capture the crucial complementary gains between face and context information in video clips, which is significant in addressing the problems of emotion confusion and emotion misunderstanding. Accordingly, in this paper, to fully exploit the complementary information between face and context features, we present a novel cross-attention and hybrid feature weighting network to achieve accurate emotion recognition from large-scale video clips, and the proposed model consists of a dual-branch encoding (DBE) network, a hierarchical-attention encoding (HAE) network, and a deep fusion (DF) block. Specifically, the face and context encoding blocks in the DBE network generate the respective shallow features. After this, the HAE network uses the cross-attention (CA) block to investigate and capture the complementarity between facial expression features and their contexts via a cross-channel attention operation. The element recalibration (ER) block is introduced to revise the feature map of each channel by embedding global information. Moreover, the adaptive-attention (AA) block in the HAE network is developed to infer the optimal feature fusion weights and obtain the adaptive emotion features via a hybrid feature weighting operation. Finally, the DF block integrates these adaptive emotion features to predict an individual emotional state. Extensive experimental results of the CAER-S dataset demonstrate the effectiveness of our method, exhibiting its potential in the analysis of tourist reviews with video clips, estimation of job stress levels with visual emotional evidence, or assessments of mental healthiness with visual media.

Funder

Key Research and Development Program of Zhejiang Province

Open Research Fund of the College of Teacher Education, Zhejiang Normal University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3