Degradation Characteristics and Remediation Ability of Contaminated Soils by Using β-HCH Degrading Bacteria

Author:

Chen Qing1,Shi Huijun1,Liang Yanpeng23ORCID,Qin Litang12,Zeng Honghu13,Song Xiaohong12

Affiliation:

1. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China

2. Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China

3. Collaborative Innovation Center for Water Pollution Control and Water Security in Karst Region, Guilin University of Technology, Guilin 541004, China

Abstract

Three degradation strains that can utilize β-Hexachlorocyclohexanes (β-HCH) as the sole carbon source were isolated from the soil substrate of constructed wetland under long-term β-HCH stress, and they were named A1, J1, and M1. Strains A1 and M1 were identified as Ochrobactrum sp. and strain J1 was identified as Microbacterium oxydans sp. by 16S rRNA gene sequence analysis. The optimum conditions for degradation with these three strains, A1, J1, and M1, were pH = 7, 30 °C, and 5% inoculum amount, and the degradation rates of 50 μg/L β-HCH under these conditions were 58.33%, 51.96%, and 50.28%, respectively. Degradation characteristics experiments showed that root exudates could increase the degradation effects of A1 and M1 on β-HCH by 6.95% and 5.82%, respectively. In addition, the degradation bacteria A1 and J1 mixed in a ratio of 1:1 had the highest degradation rate of β-HCH, which was 69.57%. An experiment on simulated soil remediation showed that the compound bacteria AJ had the best effect on promoting the degradation of β-HCH in soil within 98 d, and the degradation rate of β-HCH in soil without root exudates was 60.22%, whereas it reached 75.02% in the presence of root exudates. The addition of degradation bacteria or degradation bacteria-root exudates during soil remediation led to dramatic changes in the community structure of the soil microorganisms, as well as a significant increase in the proportion of aerobic and Gram-negative bacterial groups. This study can enrich the resources of β-HCH degrading strains and provided a theoretical basis for the on-site engineering treatment of β-HCH contamination.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province, China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3