Pulse Wave Analysis Method of Cardiovascular Parameters Extraction for Health Monitoring

Author:

Jin Ji12,Geng Xingguang1,Zhang Yitao1,Zhang Haiying12,Ye Tianchun12

Affiliation:

1. The Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Objective: A pulse waveform is regarded as an information carrier of the cardiovascular system, which contains multiple interactive cardiovascular parameters reflecting physio-pathological states of bodies. Hence, multiple parameter analysis is increasingly meaningful to date but still cannot be easily achieved one by one due to the complex mapping between waveforms. This paper describes a new analysis method based on waveform recognition aimed for extracting multiple cardiovascular parameters to monitor public health. The objective of this new method is to deduce multiple cardiovascular parameters for a target pulse waveform based on waveform recognition to a most similar reference waveform in a given database or pattern library. Methods: The first part of the methodology includes building the sub-pattern libraries and training classifier. This provides a trained classifier and the sub-pattern library with reference pulse waveforms and known parameters. The second part is waveform analysis. The target waveform will be classified and output a state category being used to select the corresponding sub-pattern library with the same state. This will reduce subsequent recognition scope and computation costs. The mainstay of this new analysis method is improved dynamic time warping (DTW). This improved DTW and K-Nearest Neighbors (KNN) were applied to recognize the most similar waveform in the pattern library. Hence, cardiovascular parameters can be assigned accordingly from the most similar waveform in the pattern library. Results: Four hundred and thirty eight (438) randomly selected pulse waveforms were tested to verify the effectiveness of this method. The results show that the classification accuracy is 96.35%. Using statistical analysis to compare the target sample waveforms and the recognized reference ones from within the pattern library, most correlation coefficients are beyond 0.99. Each set of cardiovascular parameters was assessed using the Bland-Altman plot. The extracted cardiovascular parameters are in strong agreement with the original verifying the effectiveness of this new approach. Conclusion: This new method using waveform recognition shows promising results that can directly extract multiple cardiovascular parameters from waveforms with high accuracy. This new approach is efficient and effective and is very promising for future continuous monitoring of cardiovascular health.

Funder

key Research Program of the Chinese Academy of Sciences Foundation

Sichuan Science and Technology Major Project

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3