Does the Remote Microphone Still Outperform the Pre-Processing Algorithms? A Group Study in Adult Nucleus Recipients

Author:

Lazzerini Francesco12ORCID,Baldassari Luca1,Angileri Adriana1,Bruschini Luca13ORCID,Berrettini Stefano134,Forli Francesca13

Affiliation:

1. Otolaryngology, Audiology and Phoniatrics Unit, University of Pisa, 56126 Pisa, Italy

2. Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy

3. Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy

4. Clinical Science, Intervention and Technology, Karolinska Institute, 17177 Stockholm, Sweden

Abstract

Despite the evolution of hearing aids and cochlear implants, noisy environments are reportedly still an important hurdle for persons with hearing loss, especially in the process of speech recognition. The development of pre-processing algorithms and the pairing with a wireless device can bring relief to this situation, but it is still under scrutiny whether one or the other is more effective. The purpose of this study was to compare the benefits of speech recognition in a noisy environment by recipients of cochlear implants when using the pre-processing automatic algorithms or when using a wireless microphone. Twenty-nine participants were selected, aged 14 to 83, suffering from sensorineural hearing loss and recipients of cochlear implants for at least 6 months. The proprietary Cochlear Limited SCAN technology uses pre-processing algorithms to attenuate various noises; the wireless device MiniMic2 uses a 2.4 GHz connection to facilitate communications between the recipient and the signal source. Participants were asked to repeat 20 sentences randomly generated by the adaptive Italian Matrix Sentence Test, first while using the SCAN technology and then with the wireless MiniMic2. Both signal and noise were administered through a single loudspeaker set 1 m away from the subject. Significantly better results in speech recognition of noise were achieved with the wireless MiniMic2 when compared to the SCAN technology.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3