Dual Auto-Encoder GAN-Based Anomaly Detection for Industrial Control System

Author:

Chen LeiORCID,Li Yuan,Deng Xingye,Liu Zhaohua,Lv Mingyang,Zhang HongqiangORCID

Abstract

As a core tool, anomaly detection based on a generative adversarial network (GAN) is showing its powerful potential in protecting the safe and stable operation of industrial control systems (ICS) under the Internet of Things (IoT). However, due to the long-tailed distribution of operating data in ICS, existing GAN-based anomaly detection models are prone to misjudging an unseen marginal sample as an outlier. Moreover, it is difficult to collect abnormal samples from ICS. To solve these challenges, a dual auto-encoder GAN-based anomaly detection model is proposed for the industrial control system, simply called the DAGAN model, to achieve an accurate and efficient anomaly detection without any abnormal sample. First, an “encoder–decoder–encoder” architecture is used to build a dual GAN model for learning the latent data distribution without any anomalous sample. Then, a parameter-free dynamic strategy is proposed to robustly and accurately learn the marginal distribution of the training data through dynamic interaction between two GANs. Finally, based on the learned normal distribution and marginal distribution, an optimized anomaly score is used to measure whether a sample is an outlier, thereby reducing the probability of a marginal sample being misjudged. Extensive experiments on multiple datasets demonstrate the advantages of our DAGAN model.

Funder

National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation of China

National Key Research and Development Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3