Abstract
Foreign objects such as kites, nests and balloons, etc., suspended on transmission lines may shorten the insulation distance and cause short-circuits between phases. A detection method for foreign objects on transmission lines is proposed, which combines multi-network feature fusion and random forest. Firstly, the foreign object image dataset of balloons, kites, nests and plastic was established. Then, the Otus binarization threshold segmentation and morphology processing were applied to extract the target region of the foreign object. The features of the target region were extracted by five types of convolutional neural networks (CNN): GoogLeNet, DenseNet-201, EfficientNet-B0, ResNet-101, AlexNet and then fused by concatenation fusion strategy. Furthermore, the fused features in different schemes were used to train and test random forest, meanwhile, the gradient-weighted class activation mapping (Grad-CAM) was used to visualize the decision region of each network, which can verify the effectiveness of the optimal feature fusion scheme. Simulation results indicate that the detection accuracy of the proposed method can reach 95.88%, whose performance is better than the model of a single network. This study provides references for detection of foreign objects suspended on transmission lines.
Funder
Jiangxi “Double Thousand Plan” Innovative Leading Talents Long-term Project
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献