TL-YOLO: Foreign-Object Detection on Power Transmission Line Based on Improved Yolov8

Author:

Shao Yeqin1ORCID,Zhang Ruowei2,Lv Chang1,Luo Zexing1,Che Meiqin1ORCID

Affiliation:

1. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

2. School of Electrical Engineering, Nantong University, Nantong 226004, China

Abstract

Foreign objects on power transmission lines carry a significant risk of triggering large-scale power interruptions which may have serious consequences for daily life if they are not detected and handled in time. To accurately detect foreign objects on power transmission lines, this paper proposes a TL-Yolo method based on the Yolov8 framework. Firstly, we design a full-dimensional dynamic convolution (ODConv) module as a backbone network to enhance the feature extraction capability, thus retaining richer semantic content and important visual features. Secondly, we present a feature fusion framework combining a weighted bidirectional feature pyramid network (BiFPN) and multiscale attention (MSA) module to mitigate the degradation effect of multiscale feature representation in the fusion process, and efficiently capture the high-level feature information and the core visual elements. Thirdly, we utilize a lightweight GSConv cross-stage partial network (GSCSP) to facilitate efficient cross-level feature fusion, significantly reducing the complexity and computation of the model. Finally, we employ the adaptive training sample selection (ATSS) strategy to balance the positive and negative samples, and dynamically adjust the selection process of the training samples according to the current state and performance of the model, thus effectively reducing the object misdetection and omission. The experimental results show that the average detection accuracy of the TL-Yolo method reaches 91.30%, which is 4.20% higher than that of the Yolov8 method. Meanwhile, the precision and recall metrics of our method are 4.64% and 3.53% higher than those of Yolov8. The visualization results also show the superior detection performance of the TL-Yolo algorithm in real scenes. Compared with the state-of-the-art methods, our method achieves higher accuracy and speed in the detection of foreign objects on power transmission lines.

Funder

National Natural Science Foundation of China

Fundamental Science Research Program of Nantong

“Qinglan Project” of Jiangsu Universities

Publisher

MDPI AG

Reference43 articles.

1. The foreign object algorithm for transmission lines based on the improved YOLOv4;Tang;J. Anhui Univ. Nat. Sci.,2021

2. A deep learning method to detect foreign objects for inspecting power transmission lines;Zhu;IEEE Access,2020

3. Improved YOLOv3 foreign body detection method in transmission line;Zhang;Laser J.,2022

4. Application of the Unmanned Aerial Vehicle in the Transmission Line Inspection;Li;Power Syst. Clean Energy,2017

5. Unmanned aerial vehicle for transmission line inspection: Status, standardization, and perspectives;Li;Front. Energy Res.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3