Wireless Sensor Networks for Noise Measurement and Acoustic Event Recognitions in Urban Environments

Author:

Luo LiyanORCID,Qin Hongming,Song XiyuORCID,Wang Mei,Qiu Hongbing,Zhou ZouORCID

Abstract

Nowadays, urban noise emerges as a distinct threat to people’s physiological and psychological health. Previous works mainly focus on the measurement and mapping of the noise by using Wireless Acoustic Sensor Networks (WASNs) and further propose some methods that can effectively reduce the noise pollution in urban environments. In addition, the research on the combination of environmental noise measurement and acoustic events recognition are rapidly progressing. In a real-life application, there still exists the challenges on the hardware design with enough computational capacity, the reduction of data amount with a reasonable method, the acoustic recognition with CNNs, and the deployment for the long-term outdoor monitoring. In this paper, we develop a novel system that utilizes the WASNs to monitor the urban noise and recognize acoustic events with a high performance. Specifically, the proposed system mainly includes the following three stages: (1) We used multiple sensor nodes that are equipped with various hardware devices and performed with assorted signal processing methods to capture noise levels and audio data; (2) the Convolutional Neural Networks (CNNs) take such captured data as inputs and classify them into different labels such as car horn, shout, crash, explosion; (3) we design a monitoring platform to visualize noise maps, acoustic event information, and noise statistics. Most importantly, we consider how to design effective sensor nodes in terms of cost, data transmission, and outdoor deployment. Experimental results demonstrate that the proposed system can measure the urban noise and recognize acoustic events with a high performance in real-life scenarios.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. A traffic noise model for road intersections in the city of Cartagena de Indias Colombia;Quinones;Transp. Environ.,2016

2. DEVELOPMENT OF WIRELESS SENSOR NETWORK USING BLUETOOTH LOW ENERGY (BLE) FOR CONSTRUCTION NOISE MONITORING

3. Assessment of Noise Pollution Indices in the City of Kolhapur, India

4. Noise Pollution near Health Institutions;Ilic;Qual. Life.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3