Multi-Task Classification of Physical Activity and Acute Psychological Stress for Advanced Diabetes Treatment

Author:

Abdel-Latif Mahmoud1ORCID,Askari Mohammad Reza1ORCID,Rashid Mudassir M.1ORCID,Park Minsun2ORCID,Sharp Lisa2,Quinn Laurie2,Cinar Ali13ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W 33rd St., Chicago, IL 60616, USA

2. College of Nursing, University of Illinois at Chicago, Chicago, IL 60607, USA

3. Department of Biomedical Engineering, Illinois Institute of Technology, 3255 S Dearborn St., Chicago, IL 60616, USA

Abstract

Wearable sensor data can be integrated and interpreted to improve the treatment of chronic conditions, such as diabetes, by enabling adjustments in treatment decisions based on physical activity and psychological stress assessments. The challenges in using biological analytes to frequently detect physical activity (PA) and acute psychological stress (APS) in daily life necessitate the use of data from noninvasive sensors in wearable devices, such as wristbands. We developed a recurrent multi-task deep neural network (NN) with long-short-term-memory architecture to integrate data from multiple sensors (blood volume pulse, skin temperature, galvanic skin response, three-axis accelerometers) and simultaneously detect and classify the type of PA, namely, sedentary state, treadmill run, stationary bike, and APS, such as non-stress, emotional anxiety stress, mental stress, and estimate the energy expenditure (EE). The objective was to assess the feasibility of using the multi-task recurrent NN (RNN) rather than independent RNNs for detection and classification of AP and APS. The multi-task RNN achieves comparable performance to independent RNNs, with the multi-task RNN having F1 scores of 98.00% for PA and 98.97% for APS, and a root mean square error (RMSE) of 0.728 calhr.kg for EE estimation for testing data. The independent RNNs have F1 scores of 99.64% for PA and 98.83% for APS, and an RMSE of 0.666 calhr.kg for EE estimation. The results indicate that a multi-task RNN can effectively interpret the signals from wearable sensors. Additionally, we developed individual and multi-task extreme gradient boosting (XGBoost) for separate and simultaneous classification of PA types and APS types. Multi-task XGBoost achieved F1 scores of 99.89% and 98.31% for the classification of PA types and APS types, respectively, while the independent XGBoost achieved F1 scores of 99.68% and 96.77%, respectively. The results indicate that both multi-task RNN and XGBoost can be used for the detection and classification of PA and APS without loss of performance with respect to individual separate classification systems. People with diabetes can achieve better outcomes and quality of life by including physical activity and psychological stress assessments in treatment decision-making.

Funder

NIH

JDRF

Publisher

MDPI AG

Subject

General Medicine

Reference58 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3