Acute Psychological Stress Detection Using Explainable Artificial Intelligence for Automated Insulin Delivery

Author:

Abdel-Latif Mahmoud M.1ORCID,Rashid Mudassir M.1ORCID,Askari Mohammad Reza1ORCID,Shahidehpour Andrew1ORCID,Ahmadasas Mohammad1ORCID,Park Minsun2ORCID,Sharp Lisa2,Quinn Lauretta2ORCID,Cinar Ali13ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W 33rd St., Chicago, IL 60616, USA

2. College of Nursing, University of Illinois at Chicago, 845 S Damen Avenue, Chicago, IL 60612, USA

3. Department of Biomedical Engineering, Illinois Institute of Technology, 3255 S Dearborn St., Chicago, IL 60616, USA

Abstract

Acute psychological stress (APS) is a complex and multifactorial phenomenon that affects metabolism, necessitating real-time detection and interventions to mitigate its effects on glycemia in people with type 1 diabetes. This study investigates the detection of APS using physiological variables measured by the Empatica E4 wristband and employs explainable machine learning to evaluate the importance of the physiological signals. The extreme gradient boosting model is developed for classification of APS and non-stress (NS) with weighted training, achieving an overall accuracy of 99.93%. The Shapley additive explanations (SHAP) technique is employed to interpret the global importance of the physiological signals, determining the order of importance for the variables from most to least as galvanic skin response (GSR), heart rate (HR), skin temperature (ST), and motion sensors (accelerometer readings). The increase in GSR and HR are positively correlated with the occurrence of APS as indicated by high positive SHAP values. The SHAP technique is also used to explain the local signal importance for particular instances of misclassified samples. The detection of APS can inform multivariable automated insulin delivery systems to intervene to counteract the APS-induced glycemic excursions in people with type 1 diabetes.

Funder

NIH

JDRF

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3