Cascading Pose Features with CNN-LSTM for Multiview Human Action Recognition

Author:

Malik Najeeb ur RehmanORCID,Abu-Bakar Syed Abdul RahmanORCID,Sheikh Usman Ullah,Channa AsmaORCID,Popescu NirvanaORCID

Abstract

Human Action Recognition (HAR) is a branch of computer vision that deals with the identification of human actions at various levels including low level, action level, and interaction level. Previously, a number of HAR algorithms have been proposed based on handcrafted methods for action recognition. However, the handcrafted techniques are inefficient in case of recognizing interaction level actions as they involve complex scenarios. Meanwhile, the traditional deep learning-based approaches take the entire image as an input and later extract volumes of features, which greatly increase the complexity of the systems; hence, resulting in significantly higher computational time and utilization of resources. Therefore, this research focuses on the development of an efficient multi-view interaction level action recognition system using 2D skeleton data with higher accuracy while reducing the computation complexity based on deep learning architecture. The proposed system extracts 2D skeleton data from the dataset using the OpenPose technique. Later, the extracted 2D skeleton features are given as an input directly to the Convolutional Neural Networks and Long Short-Term Memory (CNN-LSTM) architecture for action recognition. To reduce the complexity, instead of passing the whole image, only extracted features are given to the CNN-LSTM architecture, thus eliminating the need for feature extraction. The proposed method was compared with other existing methods, and the outcomes confirm the potential of the proposed technique. The proposed OpenPose-CNNLSTM achieved an accuracy of 94.4% for MCAD (Multi-camera action dataset) and 91.67% for IXMAS (INRIA Xmas Motion Acquisition Sequences). Our proposed method also significantly decreases the computational complexity by reducing the number of inputs features to 50.

Funder

European Union’s Horizon 2020 Research and Innovation program

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3