Dynamic Queries through Augmented Reality for Intelligent Video Systems

Author:

Montes-Martínez Josue-Rafael1ORCID,Jiménez-Hernández Hugo2ORCID,Herrera-Navarro Ana-Marcela2ORCID,Díaz-Jiménez Luis-Antonio2ORCID,Perez-Ramos Jorge-Luis2ORCID,Solano-Vargas Julio-César1ORCID

Affiliation:

1. Center for Engineering and Industrial Development, Av. Playa Pie de la Cuesta No. 702, Desarrollo San Pablo, Queretaro 76125, Mexico

2. Informatic Faculty, Autonomous University of Queretaro, Av. de las Ciencias s/n, Juriquilla, Queretaro 76017, Mexico

Abstract

Artificial vision system applications have generated significant interest as they allow information to be obtained through one or several of the cameras that can be found in daily life in many places, such as parks, avenues, squares, houses, etc. When the aim is to obtain information from large areas, it can become complicated if it is necessary to track an object of interest, such as people or vehicles, due to the vision space that a single camera can cover; this opens the way to distributed zone monitoring systems made up of a set of cameras that aim to cover a larger area. Distributed zone monitoring systems add great versatility, becoming more complex in terms of the complexity of information analysis, communication, interoperability, and heterogeneity in the interpretation of information. In the literature, the development of distributed schemes has focused on representing data communication and sharing challenges. Currently, there are no specific criteria for information exchange and analysis in a distributed system; hence, different models and architectures have been proposed. In this work, the authors present a framework to provide homogeneity in a distributed monitoring system. The information is obtained from different cameras, where a global reference system is defined for generated trajectories, which are mapped independently of the model used to obtain the dynamics of the movement of people within the vision area of a distributed system, thus allowing for its use in works where there is a large amount of information from heterogeneous sources. Furthermore, we propose a novel similarity metric that allows for information queries from heterogeneous sources. Finally, to evaluate the proposed performance, the authors developed several distributed query applications in an augmented reality system based on realistic environments and historical data retrieval using a client–server model.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3