Lignin and Cellulose Contents in Chinese Red Pine (Pinus tabuliformis Carr.) Plantations Varied in Stand Structure, Soil Property, and Regional Climate

Author:

Wang Yige1,Sun Xiangyang1,Li Suyan1,Wei Bin2

Affiliation:

1. Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China

2. Liaoning Provincial Forestry Development Service Center, Liaoning Forestry and Grassland Administration, Shenyang 110804, China

Abstract

The reserve of litter is expected to be reduced on the forest floors of pine plantations dually for the prevention of high risks of forest fires and with a more practical probability of reuse. Lignin and cellulose are the two key constitutive components in litter residues that account for the highest proportion of carbon but are the last to be fully decomposed. The existing trials started examining the mechanisms behind decomposing these two components in response to the combined driving forces of microclimatic factors, forest structure, and stand properties. However, the results were mostly limited to a local-scale ecosystem, and the evidence was reported to be highly scattered across varied conditions globally. Awareness about the combined effects of the driving forces behind the lignin and cellulose contents in the litter of plantations on a large scale is still scarce. In this study, a total of 60 Pinus tabuliformis Carr. plantations (40-year-old) were investigated for their litter quality, regional meteorological factors, soil properties, and stand structure in a provincial area across Liaoning, northeast China. High lignin (40%–43%) and cellulose contents (15%–20%) were found to be located mainly in stands around the biggest city of Shenyang. Rainfall was a key factor that determined the decomposition, but neither the forest structure nor soil nutrient content generated direct effects on the two litter components. The combined factors of low soil pH (~5.8) and high rainfall (~3.0 mm per day) together mainly accounted for the promotion of natural litter decomposition.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3