A Holistic Multi-Objective Design Optimization Approach for Arctic Offshore Supply Vessels

Author:

Kondratenko Aleksander A.ORCID,Bergström MartinORCID,Reutskii Aleksander,Kujala PenttiORCID

Abstract

This article presents a new holistic multi-objective design approach for the optimization of Arctic Offshore Supply Vessels (OSVs) for cost- and eco-efficiency. The approach is intended to be used in the conceptual design phase of an Arctic OSV. It includes (a) a parametric design model of an Arctic OSV, (b) performance assessment models for independently operating and icebreaker-assisted Arctic OSVs, and (c) a novel adaptation of the Artificial Bee Colony (ABC) algorithm for multi-objective optimization of Arctic OSVs. To demonstrate the feasibility and viability of the proposed optimization approach, a series of case studies covering a wide range of operating scenarios are carried out. The results of the case studies indicate that the consideration of icebreaker assistance significantly extends the feasible design space of Arctic OSVs, enabling solutions with improved energy- and cost-efficiency. The results further indicate that the optimal amount of icebreaking assistance and optimal vessel speed differs for different vessels, highlighting the motivation for holistic design optimization. The applied adaptation of the ABC algorithm proved to be well suited and efficient for the multi-objective optimization problem considered.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference35 articles.

1. Energy transitions or additions?

2. Arctic Oil and Gas Resource Development: Current Situation and Prospects;Panichkin,2016

3. Chapter 19 Operational economics

4. Energy Efficiency Measureshttps://www.imo.org/en/OurWork/Environment/Pages/Technical-and-Operational-Measures.aspx.

5. Resolution MEPC.308(73) 2018 Guidelines on the Method of Calculation of the Attained Energy,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3