Abstract
This study compared popular Deep Learning (DL) architectures to classify machining surface roughness using sound and force data. The DL architectures considered in this study include Multi-Layer Perceptron (MLP), Convolution Neural Network (CNN), Long Short-Term Memory (LSTM), and transformer. The classification was performed on the sound and force data generated during machining aluminum sheets for different levels of spindle speed, feed rate, depth of cut, and end-mill diameter, and it was trained on 30 s machining data (10–40 s) of the machining experiments. Since a raw audio waveform is seldom used in DL models, Mel-Spectrogram and Mel Frequency Cepstral Coefficients (MFCCs) audio feature extraction techniques were used in the DL models. The results of DL models were compared for the training–validation accuracy, training epochs, and training parameters of each model. Although the roughness classification by all the DL models was satisfactory (except for CNN with Mel-Spectrogram), the transformer-based modes had the highest training (>96%) and validation accuracies (≈90%). The CNN model with Mel-Spectrogram exhibited the worst training and inference accuracy, which is influenced by limited training data. Confusion matrices were plotted to observe the classification accuracy visually. The confusion matrices showed that the transformer model trained on Mel-Spectrogram and the transformer model trained on MFCCs correctly predicted 366 (or 91.5%) and 371 (or 92.7%) out of 400 test samples. This study also highlights the suitability and superiority of the transformer model for time series sound and force data and over other DL models.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献