Abstract
This publication describes a concept that intends to enable an optimization of machining with regard to the balance between criteria related to technology, economy and sustainability. The work is of a discussion nature and intends to provide a framework for further research and development in the area. Previous research and development during the 80’s and 90’s is presented in general terms and in particular the reasons for its limited success in providing real-time feedback on machining operations are highlighted, despite very large financial investments even by today’s standards. Ongoing research worldwide in current process optimization and its associated building blocks will be highlighted, and identified important work is referenced. Below are new conditions that can be linked to both process knowledge and its modeling, as well as new conditions for developing integrated sensors that can handle the extreme environment in and around a processing operation. A previous limiting factor has been signal processing and signal transmission, which with new knowledge and developed technology in the last 10 years provides new conditions for process optimization in real time.The need for new and up-to-date principles for process optimization, which also integrate sustainability issues and environmental impact, has increased in importance in several respects. Important issues such as tool utilization, efficient use of materials and high time utilization have become relevant as these process results control both energy consumption and environmental impact. The geopolitical development linked to the availability of critical tool materials such as cobalt and tungsten also drives research issues that can generally optimize and streamline production processes.Finally, the publication describes the possibility of realizing a real-time feedback and optimized machining that takes into account technology, economy and sustainability, through interdisciplinary research across several levels of technology readiness (TRL). The results are expected to have positive effects on several production factors before, during and after machining. Developed technologies in machining can also make valuable contributions to the development of other products and production processes.