Three-Dimensional Semantic Segmentation of Pituitary Adenomas Based on the Deep Learning Framework-nnU-Net: A Clinical Perspective

Author:

Shu Xujun,Zhou Yijie,Li Fangye,Zhou Tao,Meng Xianghui,Wang Fuyu,Zhang Zhizhong,Pu Jian,Xu Bainan

Abstract

This study developed and evaluated nnU-Net models for three-dimensional semantic segmentation of pituitary adenomas (PAs) from contrast-enhanced T1 (T1ce) images, with aims to train a deep learning-based model cost-effectively and apply it to clinical practice. Methods: This study was conducted in two phases. In phase one, two models were trained with nnUNet using distinct PA datasets. Model 1 was trained with 208 PAs in total, and model 2 was trained with 109 primary nonfunctional pituitary adenomas (NFPA). In phase two, the performances of the two models were investigated according to the Dice similarity coefficient (DSC) in the leave-out test dataset. Results: Both models performed well (DSC > 0.8) for PAs with volumes > 1000 mm3, but unsatisfactorily (DSC < 0.5) for PAs < 1000 mm3. Conclusions: Both nnU-Net models showed good segmentation performance for PAs > 1000 mm3 (75% of the dataset) and limited performance for PAs < 1000 mm3 (25% of the dataset). Model 2 trained with fewer samples was more cost-effective. We propose to combine the use of model-based segmentation for PA > 1000 mm3 and manual segmentation for PA < 1000 mm3 in clinical practice at the current stage.

Funder

Shanghai Municipal Science and Technology Major Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3