Abstract
The Cosmic Neutrino Background (CνB) anisotropies for massive neutrinos are a unique probe of large-scale structure formation. The redshift-distance measure is completely different for massive neutrinos as compared to electromagnetic radiation. The CνB anisotropies in massive neutrinos grow in response to non-relativistic motion in gravitational potentials seeded by relatively high k-modes. Differences in the early phases of large-scale structure formation in warm dark matter (WDM) versus cold dark matter (CDM) cosmologies have an impact on the magnitude of the CνB anisotropies for contributions to the angular power spectrum that peak at high k-modes. We take the examples of WDM consisting of 2, 3, or 7 keV sterile neutrinos and show that the CνB anisotropies for 0.05 eV neutrinos drop off at high-l multipole moment in the angular power spectrum relative to CDM. At the same angular scales that one can observe baryonic acoustical oscillations in the CMB, the CνB anisotropies begin to become sensitive to differences in WDM and CDM cosmologies. The precision measurement of high-l multipoles in the CνB neutrino sky map is a potential possibility for the PTOLEMY experiment with thin film targets of spin-polarized atomic tritium superfluid that exhibit significant quantum liquid amplification for non-relativistic relic neutrino capture.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献