Influence of local structure on relic neutrino abundances and anisotropies

Author:

Zimmer Fabian,Correa Camila A.,Ando Shin'ichiro

Abstract

AbstractGravitational potentials of the Milky Way and extragalactic structures can influence the propagation of the cosmic neutrino background (CNB). Of particular interest to future CNB observatories, such as PTOLEMY, is the CNB number density on Earth. In this study, we have developed a simulation framework that maps the trajectories of relic neutrinos as they move through the local gravitational environment. The potentials are based on the dark matter halos found in state-of-the-art cosmological N-body simulations, resulting in a more nuanced and realistic input than the previously employed analytical models. We find that the complex dark matter distributions, along with their dynamic evolution, influence the abundance and anisotropies of the CNB in ways unaccounted for by earlier analytical methods. Importantly, these cosmological simulations contain multiple instances of Milky Way-like halos that we employ to model a variety of gravitational landscapes. Consequently, we notice a variation in the CNB number densities that can be primarily attributed to the differences in the masses of these individual halos. For neutrino masses between 0.01 and 0.3 eV, we note clustering factors within the range of 1 + 𝒪(10-3) to 1 + 𝒪(1). Furthermore, the asymmetric nature of the underlying dark matter distributions within the halos results in not only overdense, but intriguingly, underdense regions within the full-sky anisotropy maps. Gravitational clustering appears to have a significant impact on the angular power spectra of these maps, leading to orders of magnitude more power on smaller scales beyond multipoles of ℓ = 3 when juxtaposed against predictions by primordial fluctuations. We discuss how our results reshape our understanding of relic neutrino clustering and how this might affect observability of future CNB observatories such as PTOLEMY.GitHub: our simulation code will be made visiblehere.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Where shadows lie: reconstruction of anisotropies in the neutrino sky;Journal of Cosmology and Astroparticle Physics;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3