Quantum Capacity and Vacuum Compressibility of Spacetime: Thermal Fields

Author:

Cho Hing-TongORCID,Hsiang Jen-TsungORCID,Hu Bei-LokORCID

Abstract

An important yet perplexing result from work in the 1990s and 2000s is the near-unity value of the ratio of fluctuations in the vacuum energy density of quantum fields to the mean in a collection of generic spacetimes. This was carried out by way of calculating the noise kernels which are the correlators of the stress-energy tensor of quantum fields. In this paper, we revisit this issue via a quantum thermodynamics approach, by calculating two quintessential thermodynamic quantities: the heat capacity and the quantum compressibility of some model geometries filled with a quantum field at high and low temperatures. This is because heat capacity at constant volume gives a measure of the fluctuations of the energy density to the mean. When this ratio approaches or exceeds unity, the validity of the canonical distribution is called into question. Likewise, a system’s compressibility at constant pressure is a criterion for the validity of grand canonical ensemble. We derive the free energy density and, from it, obtain the expressions for these two thermodynamic quantities for thermal and quantum fields in 2d Casimir space, 2d Einstein cylinder and 4d (S1×S3 ) Einstein universe. To examine the dependence on the dimensionality of space, for completeness, we have also derived these thermodynamic quantities for the Einstein universes with even-spatial dimensions: S1×S2 and S1×S4. With this array of spacetimes we can investigate the thermodynamic stability of quantum matter fields in them and make some qualitative observations on the compatibility condition for the co-existence between quantum fields and spacetimes, a fundamental issue in the quantum and gravitation conundrum.

Funder

Ministry of Science and Technology, Taiwan, ROC

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference95 articles.

1. Quantum Fields in Curved Space;Birrell,1982

2. Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity;Parker,2009

3. Semiclassical and Stochastic Gravity: Quantum Field Effects on Curved Spacetime;Hu,2020

4. Nonequilibrium Quantum Field Theory;Calzetta,2008

5. Nonequilibrium quantum free energy and effective temperature, generating functional, and influence action

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3