Heat capacity and quantum compressibility of dynamical spacetimes with thermal particle creation

Author:

Hsiang Jen-Tsung1ORCID,Xie Yu-Cun2ORCID,Hu Bei-Lok32ORCID

Affiliation:

1. National Taiwan University of Science and Technology

2. University of Maryland

3. Maryland Center for Fundamental Physics and Joint Quantum Institute

Abstract

This work continues the investigation in two recent papers on the quantum thermodynamics of spacetimes, (1) placing what was studied in [] for thermal quantum fields in the context of early universe cosmology, and (2) extending the considerations of vacuum compressibility of dynamical spaces treated in [] to dynamical spacetimes with thermal quantum fields. We begin with a warning that thermal equilibrium condition is not guaranteed to exist or maintained in a dynamical setting and thus finite temperature quantum field theory in cosmological spacetimes needs more careful considerations than what is often described in textbooks. A full description requires nonequilibrium quantum field theory in dynamical spacetimes using “in-in” techniques. A more manageable subclass of dynamics is where thermal equilibrium conditions are established at both the beginning and the end of evolution, where the in-thermal state and the out-thermal state are both well defined. Particle creation in the full history can then be calculated in this in-out asymptotically-stationary setup via the S-matrix transition amplitudes. Here we shall assume an in-vacuum state. It has been shown that if the intervening dynamics has an initial period of exponential expansion, such as in inflationary cosmology, particles created from the parametric amplification of the vacuum fluctuations in the initial vacuum will have a thermal spectrum measured at the out-state. Under these conditions finite temperature field theory can be applied to calculate the quantum thermodynamic quantities. Here we consider a massive conformal scalar field in a closed four-dimensional Friedmann-Lemaître-Robertson-Walker universe based on the simple analytically solvable Bernard-Duncan model. We calculate the energy density of particles created from an in-vacuum and derive the partition function. From the free energy we then derive the heat capacity and the quantum compressibility of these spacetimes with thermal particle creation. We end with some discussions and suggestions for further work in this program of studies. Published by the American Physical Society 2024

Funder

National Science and Technology Council

National Center for Theoretical Sciences

National Tsing Hua University

Academia Sinica

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3