Generalized Darmois–Israel Junction Conditions

Author:

Chu Chong-Sun,Tan Hai-Siong

Abstract

We present a general method to derive the appropriate Darmois–Israel junction conditions for gravitational theories with higher-order derivative terms by integrating the bulk equations of motion across the singular hypersurface. In higher-derivative theories, the field equations can contain terms which are more singular than the Dirac delta distribution. To handle them appropriately, we formulate a regularization procedure based on representing the delta function as the limit of a sequence of classical functions. This procedure involves imposing suitable constraints on the extrinsic curvature such that the field equations are compatible with the singular source being a delta distribution. As explicit examples of our approach, we demonstrate in detail how to obtain the generalized junction conditions for quadratic gravity, F(R) theories, a 4D low-energy effective action in string theory, and action terms that are Euler densities. Our results are novel, and refine the accuracy of previously claimed results in F(R) theories and quadratic gravity. In particular, when the coupling constants of quadratic gravity are those for the Gauss–Bonnet case, our junction conditions reduce to the known ones for the latter obtained independently by boundary variation of a surface term in the action. Finally, we briefly discuss a couple of applications to thin-shell wormholes and stellar models.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference53 articles.

1. Les equations de la gravitation einsteinienne;Darmois,1927

2. Singular Hypersurfaces and Thin Shells in General Relativity;Israel;Nuovo Cimento,1966

3. Bemerkung zur de Sitterschen Welt;Lanczos;Phys. Z.,1922

4. Spatial distribution of matter in Einstein’s theory of gravity;Lanczos;Ann. Phys.,1924

5. Action integrals and partition functions in quantum gravity

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3