Multi-Wavelength Observations of a Failed Filament Eruption and Associated Hovered Coronal Mass Ejection

Author:

Zhang YinORCID,Tan BaolinORCID,Tan Chengmin,Huang JingORCID,Yan YihuaORCID

Abstract

Failed filament eruption remains mysterious on its initiation, magnetic environment, and erupting and failing mechanisms. We present multi-wavelength observations of a failed filament eruption and its associated hovered coronal mass ejection (hovered-CME) from limb observations of the Ahead of Solar Terrestrial Relations Observatory. On-disk observations from Solar Dynamics Observatory show the expansion of the anchored leg of an S-shaped filament during the pre-eruption phase. The main eruption starts as a sudden ejection of the erupted leg, which is followed by the appearance of EUV brightening in the S-shaped magnetic field. The brightening is spatio-temporal accompanied with hard X-ray emission enhancement, and cancellation of opposite magnetic polarities, which imply possible reconnection. After reaching the maximum displacement, the erupted material drains back to the Sun along the remaining anchored leg. The non-linear force free magnetic field extrapolation shows an S-shaped magnetic field, formed by two magnetic structures, with a strong enveloped magnetic field. The decay index at the possible apex of the filament is 0.8–1.2. Observations indicate that the failed filament eruption is triggered by tether cutting reconnection and is possibly confined by the upper magnetic field. The hovered-CME, resulting from the failed filament eruption and recording as a coronal mass ejection (CME), may cause the overestimation of the CME count.

Funder

National Natural Science Foundation of China

MOST Key Project

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3