Event-Based Anomaly Detection for Searches for New Physics

Author:

Chekanov SergeiORCID,Hopkins WalterORCID

Abstract

This paper discusses model-agnostic searches for new physics at the Large Hadron Collider using anomaly-detection techniques for the identification of event signatures that deviate from the Standard Model (SM). We investigate anomaly detection in the context of a machine-learning approach based on autoencoders. The analysis uses Monte Carlo simulations for the SM background and several selected exotic models. We also investigate the input space for the event-based anomaly detection and illustrate the shapes of invariant masses in the outlier region which will be used to perform searches for resonant phenomena beyond the SM. Challenges and conceptual limitations of this approach are discussed.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference28 articles.

1. ATLAS Collaboration (2012). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716, 1–29.

2. CMS Collaboration (2012). Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B, 716, 30–61.

3. Variational autoencoders for new physics mining at the Large Hadron Collider;J. High Energy Phys.,2019

4. Adversarially-trained autoencoders for robust unsupervised new physics searches;J. High Energy Phys.,2019

5. Learning new physics from a machine;Phys. Rev. D,2019

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3