Adversarially-trained autoencoders for robust unsupervised new physics searches

Author:

Blance AndrewORCID,Spannowsky Michael,Waite PhilipORCID

Abstract

Abstract Machine learning techniques in particle physics are most powerful when they are trained directly on data, to avoid sensitivity to theoretical uncertainties or an underlying bias on the expected signal. To be able to train on data in searches for new physics, anomaly detection methods are imperative, which can be realised by an autoencoder acting as an unsupervised classifier. The last source of uncertainties affecting the classifier are then experimental uncertainties in the reconstruction of the final-state objects. To mitigate their effect on the classifier and to allow for a realistic assessment of the method, we propose to combine the autoencoder with an adversarial neural network to remove its sensitivity to the smearing of the final-state objects. We quantify its effect and show that one can achieve a robust anomaly detection in resonance-induced $$ t\overline{t} $$ t t ¯ final states.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3