Swarm Intelligence Methods for Extreme Mass Ratio Inspiral Search: First Application of Particle Swarm Optimization

Author:

Zou Xiao-Bo1234ORCID,Mohanty Soumya D.25ORCID,Luo Hong-Gang14,Liu Yu-Xiao134ORCID

Affiliation:

1. School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

2. Morningside Center of Mathematics, Academy of Mathematics and System Science, Chinese Academy of Sciences, 55, Zhong Guan Cun Donglu, Beijing 100190, China

3. Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University, Lanzhou 730000, China

4. Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China

5. Department of Physics and Astronomy, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA

Abstract

Swarm intelligence (SI) methods are nature-inspired metaheuristics for global optimization that exploit a coordinated stochastic search strategy by a group of agents. Particle swarm optimization (PSO) is an established SI method that has been applied successfully to the optimization of rugged high-dimensional likelihood functions, a problem that represents the main bottleneck across a variety of gravitational wave (GW) data analysis challenges. We present results from the first application of PSO to one of the most difficult of these challenges, namely the search for the Extreme Mass Ratio Inspiral (EMRI) in data from future spaceborne GW detectors such as LISA, Taiji, or Tianqin. We use the standard Generalized Likelihood Ratio Test formalism, with the minimal use of restrictive approximations, to search 6 months of simulated LISA data and quantify the search depth, signal-to-noise ratio (SNR), and breadth, within the ranges of the EMRI parameters, that PSO can handle. Our results demonstrate that a PSO-based EMRI search is successful for a search region ranging over ≳10σ for the majority of parameters and ≳200σ for one, with σ being the SNR-dependent Cramer–Rao lower bound on the parameter estimation error and 30≤SNR≤50. This is in the vicinity of the search ranges that the current hierarchical schemes can identify. Directions for future improvement, including computational bottlenecks to be overcome, are identified.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Reference66 articles.

1. Amaro-Seoane, P., Audley, H., Babak, S., Baker, J., Barausse, E., Bender, P., Berti, E., Binetruy, P., Born, M., and Bortoluzzi, D. (2017). Laser Interferometer Space Antenna. arXiv.

2. The Taiji Program in Space for gravitational wave physics and the nature of gravity;Hu;Natl. Sci. Rev.,2017

3. A brief analysis to Taiji: Science and technology;Luo;Results Phys.,2020

4. TianQin: A space-borne gravitational wave detector;Luo;Class. Quantum Gravity,2016

5. The gravitational wave signal from the galactic disk population of binaries containing two compact objects;Nelemans;Astron. Astrophys.,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3