Search for Extreme Mass Ratio Inspirals Using Particle Swarm Optimization and Reduced Dimensionality Likelihoods

Author:

Zou Xiao-Bo1234ORCID,Mohanty Soumya D.25ORCID,Luo Hong-Gang14,Liu Yu-Xiao134ORCID

Affiliation:

1. School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

2. Morningside Center of Mathematics, Academy of Mathematics and System Science, Chinese Academy of Sciences, 55, Zhong Guan Cun Donglu, Beijing 100190, China

3. Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University, Lanzhou 730000, China

4. Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China

5. Department of Physics and Astronomy, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA

Abstract

Extreme-mass-ratio inspirals (EMRIs) are significant observational targets for spaceborne gravitational wave detectors, namely, LISA, Taiji, and Tianqin, which involve the inspiral of stellar-mass compact objects into massive black holes (MBHs) with a mass range of approximately 104∼107M⊙. EMRIs are estimated to produce long-lived gravitational wave signals with more than 105 cycles before plunge, making them an ideal laboratory for exploring the strong-gravity properties of the spacetimes around the MBHs, stellar dynamics in galactic nuclei, and properties of the MBHs itself. However, the complexity of the waveform model, which involves the superposition of multiple harmonics, as well as the high-dimensional and large-volume parameter space, make the fully coherent search challenging. In our previous work, we proposed a 10-dimensional search using Particle Swarm Optimization (PSO) with local maximization over the three initial angles. In this study, we extend the search to an 8-dimensional PSO with local maximization over both the three initial angles and the angles of spin direction of the MBH, where the latter contribute a time-independent amplitude to the waveforms. Additionally, we propose a 7-dimensional PSO search by using a fiducial value for the initial orbital frequency and shifting the corresponding 8-dimensional Time Delay Interferometry responses until a certain lag returns the corresponding 8-dimensional log-likelihood ratio’s maximum. The reduced dimensionality likelihoods enable us to successfully search for EMRI signals with a duration of 0.5 years and signal-to-noise ratio of 50 within a wider search range than our previous study. However, the ranges used by both the LISA Data Challenge (LDC) and Mock LISA Data Challenge (MLDC) to generate their simulated signals are still wider than the those we currently employ in our direct searches. Consequently, we discuss further developments, such as using a hierarchical search to narrow down the search ranges of certain parameters and applying Graphics Processing Units to speed up the code. These advances aim to improve the efficiency, accuracy, and generality of the EMRI search algorithm.

Funder

National Key Research and Development Program of China

The National Natural Science Foundation of China

Publisher

MDPI AG

Reference85 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3