A Preliminary Study of Large Scale Pulsar Candidate Sifting Based on Parallel Hybrid Clustering

Author:

Ma Zhi,You Zi-YiORCID,Liu Ying,Dang Shi-Jun,Zhang Dan-Dan,Zhao Ru-Shuang,Wang Pei,Li Si-Yao,Dong Ai-JunORCID

Abstract

Pulsar candidate sifting is an essential part of pulsar analysis pipelines for discovering new pulsars. To solve the problem of data mining of a large number of pulsar data using a Five-hundred-meter Aperture Spherical radio Telescope (FAST), a parallel pulsar candidate sifting algorithm based on semi-supervised clustering is proposed, which adopts a hybrid clustering scheme based on density hierarchy and the partition method, combined with a Spark-based parallel model and a sliding window-based partition strategy. Experiments on the two datasets, HTRU (The High Time-Resolution Universe Survey) 2 and AOD-FAST (Actual Observation Data from FAST), show that the algorithm can excellently identify the pulsars with high performance: On HTRU2, the Precision and Recall rates are 0.946 and 0.905, and those on AOD-FAST are 0.787 and 0.994, respectively; the running time on both datasets is also significantly reduced compared with its serial execution mode. It can be concluded that the proposed algorithm provides a feasible idea for astronomical data mining of FAST observation.

Funder

National Natural Science Fund of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3