Applying hybrid clustering in pulsar candidate sifting with multi-modality for FAST survey

Author:

You Yi Zi,Pan YunRong,Ma Zhi,Zhang Li,Xiao Shuo,Zhang Dan Dan,Dang Shijun,Zhao Shuang Ru,Wang Pei,Dong Ai-Jun,Jiang Jiatao,Leng Jibing,Li Weian,Li Siyao

Abstract

Abstract Pulsar search is always the basis of pulsar navigation, gravitational wave detection and other research topics. Currently, the volume of pulsar candidates collected by Five-hundred-meter Aperture Spherical radio Telescope (FAST) shows an explosive growth rate that has brought challenges for its pulsar candidate filtering System. Particularly, the multi-view heterogeneous data and class imbalance between true pulsars and non-pulsar candidates have negative effects on traditional single-modal supervised classification methods. In this study, a multi-modal and semi-supervised learning based pulsar candidate sifting algorithm is presented, which adopts a hybrid ensemble clustering scheme of density-based and partition-based methods combined with a feature-level fusion strategy for input data and a data partition strategy for parallelization. Experiments on both HTRU (The High Time Resolution Universe Survey) 2 and FAST actual observation data demonstrate that the proposed algorithm could excellently identify the pulsars: On HTRU2, the precision and recall rates of its parallel mode reach 0.981 and 0.988. On FAST data, those of its parallel mode reach 0.891 and 0.961, meanwhile, the running time also significantly decrease with the increment of parallel nodes within limits. So, we can get the conclusion that our algorithm could be a feasible idea for large scale pulsar candidate sifting of FAST drift scan observation.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3