On the Resonant Vibrations Control of the Nonlinear Rotor Active Magnetic Bearing Systems

Author:

Saeed Nasser A.ORCID,El-Shourbagy Sabry M.,Kamel Magdi,Raslan Kamal R.,Awrejcewicz JanORCID,Gepreel Khaled A.ORCID

Abstract

Nonlinear vibration control of the twelve-poles electro-magnetic suspension system was tackled in this study, using a novel control strategy. The introduced control algorithm was a combination of three controllers: the proportional-derivative (PD) controller, the integral resonant controller (IRC), and the positive position feedback (PPF) controller. According to the presented control algorithm, the mathematical model of the controlled twelve-poles rotor was established as a nonlinear four-degree-of-freedom dynamical system coupled to two first-order filters. Then, the derived nonlinear dynamical system was analyzed using perturbation analysis to extract the averaging equations of motion. Based on the extracted averaging equations of motion, the efficiency of different control strategies (i.e., PD, PD+IRC, PD+PPF, and PD+IRC+PPF) for mitigating the rotor’s undesired vibrations and improving its catastrophic bifurcation was investigated. The acquired analytical results demonstrated that both the PD and PD+IRC controllers can force the rotor to respond as a linear system; however, the controlled system may exhibit the maximum oscillation amplitude at the perfect resonance condition. In addition, the obtained results demonstrated that the PD+PPF controller can eliminate the rotor nonlinear oscillation at the perfect resonance, but the system may suffer from high oscillation amplitudes when the resonance condition is lost. Moreover, we report that the combined control algorithm (PD+IRC+PPF) has all the advantages of the individual control algorithms (i.e., PD, PD+IRC, PD+PPF), while avoiding their drawbacks. Finally, the numerical simulations showed that the PD+IRC+PPF controller can eliminate the twelve-poles system vibrations regardless of both the excitation force magnitude and the resonant conditions at a short transient time.

Funder

This research was funded by Researchers Supporting Project, Taif University, Taif, Saudi Arabia.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3