Deep Anomaly Detection Based on Variational Deviation Network

Author:

Lu Junwen,Wang Jinhui,Wei Xiaojun,Wu Keshou,Liu Guanfeng

Abstract

There is relatively little research on deep learning for anomaly detection within the field of deep learning. Existing deep anomaly detection methods focus on the learning of feature reconstruction, but such methods mainly learn new feature representations, and the new features do not fully reflect the original features, leading to inaccurate anomaly scores; in addition, there is an end-to-end deep anomaly detection algorithm, but the method cannot accurately obtain a reference score that matches the data themselves. In addition, in most practical scenarios, the data are unlabeled, and there exist some datasets with labels, but the confidence and accuracy of the labels are very low, resulting in inaccurate results when put into the model, which makes them often designed for unsupervised learning, and thus in such algorithms, the prior knowledge of known anomalous data is often not used to optimize the anomaly scores. To address the two problems raised above, this paper proposes a new anomaly detection model that learns anomaly scores mainly through a variational deviation network (i.e., not by learning the reconstruction error of new features, distance metrics, or random generation, but by learning the normal distribution of normal data). In this model, we force the anomaly scores to deviate significantly from the normal data by a small amount of anomalous data and a reference score generated by variational self-encoding. The experimental results in multiple classes of data show that the new variational deviation network proposed in this paper has higher accuracy among the mainstream anomaly detection algorithms.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anomaly Detection in Manufacturing;Artificial Intelligence in Manufacturing;2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3