Fault Classification of Rotary Machinery Based on Smooth Local Subspace Projection Method and Permutation Entropy

Author:

Xiao Lingjun,Lv Yong,Fu Guozi

Abstract

Collected mechanical signals usually contain a number of noises, resulting in erroneous judgments of mechanical condition diagnosis. The mechanical signals, which are nonlinear or chaotic time series, have a high computational complexity and intrinsic broadband characteristic. This paper proposes a method of gear and bearing fault classification, based on the local subspace projection noise reduction and PE. A novel nonlinear projection noise reduction method, smooth orthogonal decomposition (SOD), is proposed to denoise the vibration signals of various operation conditions. SOD can decompose the reconstructed multiple strands to identify smooth local subspace. In the process of projection from a high dimension to a low dimension, a new weight matrix is put forward to achieve a better denoising effect. Afterwards, permutation entropy (PE) is applied in the detection of time sequence randomness and dynamic mutation behavior, which can effectively detect and amplify the variation of vibration signals. Hence PE can characterize the working conditions of gear and bearing under different conditions. The experimental results illustrate the effectiveness and superiority of the proposed approach. The theoretical derivations, numerical simulations and experimental studies, all confirm that the proposed approach based on the smooth local subspace projection method and PE, is promising in the field of the fault classification of rotary machinery.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3