Parsimonious Network Based on a Fuzzy Inference System (PANFIS) for Time Series Feature Prediction of Low Speed Slew Bearing Prognosis

Author:

Caesarendra Wahyu,Pratama Mahardhika,Kosasih Buyung,Tjahjowidodo Tegoeh,Glowacz AdamORCID

Abstract

In recent years, the utilization of rotating parts, e.g., bearings and gears, has been continuously supporting the manufacturing line to produce a consistent output quality. Due to their critical role, the breakdown of these components might significantly impact the production rate. Prognosis, which is an approach that predicts the machine failure, has attracted significant interest in the last few decades. In this paper, the prognostic approaches are described briefly and advanced predictive analytics, namely a parsimonious network based on a fuzzy inference system (PANFIS), is proposed and tested for low speed slew bearing data. PANFIS differs itself from conventional prognostic approaches, supporting online lifelong prognostics without the requirement of a retraining or reconfiguration phase. The PANFIS method is applied to normal-to-failure bearing vibration data collected for 139 days to predict the time-domain features of vibration slew bearing signals. The performance of the proposed method is compared to some established methods, such as ANFIS, eTS, and Simp_eTS. From the results, it is suggested that PANFIS offers an outstanding performance compared to those methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Robot-Operation-System-Based Smart Machine Box and Its Application on Predictive Maintenance;Sensors;2023-10-15

2. Signal-to-Image: Rolling Bearing Fault Diagnosis Using ResNet Family Deep-Learning Models;Processes;2023-05-17

3. Deep Learning-Based Explainable Fault Diagnosis Model With an Individually Grouped 1-D Convolution for Three-Axis Vibration Signals;IEEE Transactions on Industrial Informatics;2022-12

4. Research on rolling bearing fault diagnosis method based on hybrid deep learning network model;2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics);2022-08

5. An efficient diagnosis approach for bearing faults using sound quality metrics;Applied Acoustics;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3