Abstract
In recent years, the utilization of rotating parts, e.g., bearings and gears, has been continuously supporting the manufacturing line to produce a consistent output quality. Due to their critical role, the breakdown of these components might significantly impact the production rate. Prognosis, which is an approach that predicts the machine failure, has attracted significant interest in the last few decades. In this paper, the prognostic approaches are described briefly and advanced predictive analytics, namely a parsimonious network based on a fuzzy inference system (PANFIS), is proposed and tested for low speed slew bearing data. PANFIS differs itself from conventional prognostic approaches, supporting online lifelong prognostics without the requirement of a retraining or reconfiguration phase. The PANFIS method is applied to normal-to-failure bearing vibration data collected for 139 days to predict the time-domain features of vibration slew bearing signals. The performance of the proposed method is compared to some established methods, such as ANFIS, eTS, and Simp_eTS. From the results, it is suggested that PANFIS offers an outstanding performance compared to those methods.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献