Author:
Bar-Levav Elkana,Witman Moshe,Einat Moshe
Abstract
In this paper, the failure mechanisms of the thermal inkjet thin-film resistors are recognized. Additionally, designs of resistors to overcome these mechanisms are suggested and tested by simulation and experiment. The resulting resistors are shown to have improved lifetimes, spanning an order of magnitude up to 2 × 109 pulses. The thermal failure mechanisms were defined according to the electric field magnitude in three critical points—the resistor center, the resistor–conductor edge, and the resistor thermal “hot spots”. Lowering the thermal gradients between these points will lead to the improved lifetime of the resistors. Using MATLAB PDE simulations, various resistors shapes, with different electric field ratios in the hot spots, were designed and manufactured on an 8″ silicon wafer. A series of lifetime experiments were conducted on the resistors, and a strong relation between the shape and the lifetime of the resistor was found. These results have immediate ramifications regarding the different printing apparatuses which function with thermal inkjet technology, allowing the commercial production of larger thermal printheads with high MTBF rate. Such heads may fit fast and large 3D printers.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Reference30 articles.
1. Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets,2016
2. Handbook of Industrial Inkjet Printing: A Full System Approach,2018
3. Inkjet Technology for Digital Fabrication,2013
4. Progress and trends in ink-jet printing technology;Le;J. Imaging Sci. Technol.,1998
5. Sorting and lysis of single cells by BubbleJet technology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献