Impact of Program–Erase Operation Intervals at Different Temperatures on 3D Charge-Trapping Triple-Level-Cell NAND Flash Memory Reliability

Author:

Zheng Xuesong12,Wu Yifan3,Dong Haitao3,Liu Yizhi3,Sang Pengpeng3,Xiao Liyi1,Zhan Xuepeng3ORCID

Affiliation:

1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

2. China Aerospace Components Engineering Center, Beijing 100094, China

3. School of Information Science and Engineering, Shandong University, Qingdao 266237, China

Abstract

Three-dimensional charge-trapping (CT) NAND flash memory has attracted extensive attention owing to its unique merits, including huge storage capacities, large memory densities, and low bit cost. The reliability property is becoming an important factor for NAND flash memory with multi-level-cell (MLC) modes like triple-level-cell (TLC) or quad-level-cell (QLC), which is seriously affected by the intervals between program (P) and erase (E) operations during P/E cycles. In this work, the impacts of the intervals between P&E cycling under different temperatures and P/E cycles were systematically characterized. The results are further analyzed in terms of program disturb (PD), read disturb (RD), and data retention (DR). It was found that fail bit counts (FBCs) during the high temperature (HT) PD process are much smaller than those of the room temperature (RT) PD process. Moreover, upshift error and downshift error dominate the HT PD and RT PD processes, respectively. To improve the memory reliability of 3D CT TLC NAND, different intervals between P&E operations should be adopted considering the operating temperatures. These results could provide potential insights to optimize the lifetime of NAND flash-based memory systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Program of Qilu Young Scholars of Shandong University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3