Improved Control Scheduling Based on Learning to Prediction Mechanism for Efficient Machine Maintenance in Smart Factory

Author:

Malik SehrishORCID,Kim DoHyeun

Abstract

The prediction mechanism is very crucial in a smart factory as they widely help in improving the product quality and customer’s experience based on learnings from past trends. The implementation of analytics tools to predict the production and consumer patterns plays a vital rule. In this paper, we put our efforts to find integrated solutions for smart factory concerns by proposing an efficient task management mechanism based on learning to scheduling in a smart factory. The learning to prediction mechanism aims to predict the machine utilization for machines involved in the smart factory, in order to efficiently use the machine resources. The prediction algorithm used is artificial neural network (ANN) and the learning to prediction algorithm used is particle swarm optimization (PSO). The proposed task management mechanism is evaluated based on multiple scenario simulations and performance analysis. The comparisons analysis shows that proposed task management system significantly improves the machine utilization rate and drastically drops the tasks instances missing rate and tasks starvation rate.

Funder

Institute for Information and Communications Technology Promotion

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference39 articles.

1. Industry 4.0: The Fourth Industrial Revolutionhttp://www.lgcnsblog.com/features/industry-4-0-the-fourth-industrial-revolution-with-it-and-the-manufacturing-industry-sgs-platform-2/#sthash.T1sgnNZk.dpbs

2. Predictive Customer Analytics and Real-Time Business Intelligence;Nauck,2008

3. Performance Prediction of a MongoDB-Based Traceability System in Smart Factory Supply Chains

4. A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3