Harvester Maintenance Resource Scheduling Optimization, Based on the Combine Harvester Operation and Maintenance Platform

Author:

Zhang Weipeng,Zhao Bo,Zhou Liming,Wang Jizhong,Qiu Conghui,Niu Kang,Wang Fengzhu

Abstract

The combine harvester is the main machine for fieldwork during the harvest season. When the harvester fails and cannot continue to work, this indirectly affects the harvest time and the yield in the field. The emergency maintenance service of agricultural machinery can be optimized through the dynamic planning of harvester maintenance tasks, using the operation and maintenance platform. According to the scene, a priority scheme for the operation and maintenance tasks, based on the improved Q-learning algorithm, was proposed. The continuous approximation capability of the model was improved by using the BP neural network algorithm and the Q function value, in iterations, was updated continuously. At the same time, the improved TOPSIS method, based on Mahalanobis distance, was used to calculate the closeness of each harvester maintenance task, so as to determine the priority of the equipment maintenance tasks. An operation and maintenance service platform for combine harvesters was developed based on the B/S architecture, with the goal of minimizing the operation and maintenance costs and improving the tasks’ complete efficiency. In this research process, dynamic scheduling rules were formulated. Operation and maintenance resources were optimized and rationally allocated through dynamic optimization scheduling methods, and feasible solution information was generated from the operation and maintenance service platform. Finally, the actual data from the enterprise were used for verification and analysis. The verification showed the following: through a comparison of algorithm performance, it was seen that the improved BP-Q-Learning algorithm can quickly find the operation and maintenance scheduling scheme in the maintenance scheduling; the priority rules can improve the efficiency of task execution, to a certain extent; the cost of the tasks’ execution can be significantly reduced; and the maintenance distance can be shortened. This research has reference significance for the formulation and optimization of agricultural machinery maintenance for cross-regional operations.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3