Abstract
Glaciers in High Mountain Asia (HMA) have a significant impact on human activity. Thus, a detailed and up-to-date inventory of glaciers is crucial, along with monitoring them regularly. The identification of debris-covered glaciers is a fundamental and yet challenging component of research into glacier change and water resources, but it is limited by spectral similarities with surrounding bedrock, snow-affected areas, and mountain-shadowed areas, along with issues related to manual discrimination. Therefore, to use fewer human, material, and financial resources, it is necessary to develop better methods to determine the boundaries of debris-covered glaciers. This study focused on debris-covered glacier mapping using a combination of related technologies such as random forest (RF) and convolutional neural network (CNN) models. The models were tested on Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) data and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), selecting Eastern Pamir and Nyainqentanglha as typical glacier areas on the Tibetan Plateau to construct a glacier classification system. The performances of different classifiers were compared, the different classifier construction strategies were optimized, and multiple single-classifier outputs were obtained with slight differences. Using the relationship between the surface area covered by debris and the machine learning model parameters, it was found that the debris coverage directly determined the performance of the machine learning model and mitigated the issues affecting the detection of active and inactive debris-covered glaciers. Various classification models were integrated to ascertain the best model for the classification of glaciers.
Funder
National Natural Science Foundation of China
Open Project of the State Key Laboratory of Cryospheric Science
Subject
General Earth and Planetary Sciences
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献