Monitoring Changes in the Transparency of the Largest Reservoir in Eastern China in the Past Decade, 2013–2020

Author:

Li Teng,Zhu BozhongORCID,Cao Fei,Sun Hao,He Xianqiang,Liu Mingliang,Gong Fang,Bai Yan

Abstract

Based on characteristics analysis about remote sensing reflectance, the Secchi Disk Depth (SDD) in the Qiandao Lake was predicted from the Landsat8/OLI data, and its changing rates on a pixel-by-pixel scale were obtained from satellite remote sensing for the first time. Using 114 matchups data pairs during 2013–2019, the SDD satellite algorithms suitable for the Qiandao Lake were obtained through both the linear regression and machine learning (Support Vector Machine) methods, with remote sensing reflectance (Rrs) at different OLI bands and the ratio of Rrs (Band3) to Rrs (Band2) as model input parameters. Compared with field observations, the mean absolute relative difference and root mean squared error of satellite-derived SDD were within 20% and 1.3 m, respectively. Satellite-derived results revealed that SDD in the Qiandao Lake was high in boreal spring and winter, and reached the lowest in boreal summer, with the annual mean value of about 5 m. Spatially, high SDD was mainly concentrated in the southeast lake area (up to 13 m) close to the dam. The edge and runoff area of the lake were less transparent, with an SDD of less than 4 m. In the past decade (2013–2020), 5.32% of Qiandao Lake witnessed significant (p < 0.05) transparency change: 4.42% raised with a rate of about 0.11 m/year and 0.9% varied with a rate of about −0.09 m/year. Besides, the findings presented here suggested that heavy rainfall would have a continuous impact on the Qiandao Lake SDD. Our research could promote the applications of land observation satellites (such as the Landsat series) in water environment monitoring in inland reservoirs.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3