The Spatiotemporal Eutrophication Status and Trends in the Paldang Reservoir, Republic of Korea

Author:

Cho Yong-Chul1ORCID,Kang Ho-Yeong1,Son Ju-Yeon1,Kang Taegu1,Im Jong-Kwon1

Affiliation:

1. Han River Environment Research Center, Nation Institute of Environmental Research, 42, Dumulmeori-gil 68beon-gil, Yangseo-myeon, Yangpyeong-gun 12585, Gyeonggi-do, Republic of Korea

Abstract

The Paldang Reservoir (PDR), the largest artificial lake in the Republic of Korea, has recently experienced increased chemical oxygen demand (COD), eutrophication, and algal blooms due to climate change. This study aimed to analyze the hydrological characteristics and water quality of the PDR and assess its spatial and seasonal eutrophication status changes using the Korean-type trophic quality index (TSIKO) and the seasonal Mann–Kendall Test (SMK). The PDR’s water was graded “good” in terms of biochemical oxygen demand (BOD) and “fair” for COD, total phosphorous (TP), and chlorophyll-a (Chl-a), according to Korean water quality standards. COD and Chl-a had a significant positive monotonic relationship. According to the TSIKO calculations, the trophic state of the PDR was mesotrophic, but eutrophic during the summer season. TSIKO (Chl-a) in summer tended to increase with a slope value of 0.22 mg/m3/year. The main causes of eutrophication in the PDR were proposed to be TP and phytoplankton overgrowth. Therefore, lake and reservoir functions need to be assessed, and solutions that can effectively protect them from excessive eutrophication to ensure sustainable clean water use and protect freshwater ecosystems need to be found.

Funder

National Institute of Environmental Research

Environmental Fundamental Data Examination Project of Han River Basin Management Committee of the Republic of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3